本文介绍了一种在同时定位和映射(SLAM)框架中进行可靠测量的方法。现有方法在成对的基础上检查一致性或兼容性,但是在成对场景中,许多测量类型都没有足够的约束,以确定是否与其他测量不一致。本文介绍了组-K $一致性最大化(G $ K $ cm),该估计最大的测量值是内部组的一致性。可以为最大的组$ k $一致测量的求解作为广义图上最大集团问题的实例,并可以通过调整电流方法来解决。本文使用模拟数据评估了G $ K $ CM的性能,并将其与以前工作中介绍的成对一致性最大化(PCM)进行比较。
translated by 谷歌翻译
Many machine learning problems encode their data as a matrix with a possibly very large number of rows and columns. In several applications like neuroscience, image compression or deep reinforcement learning, the principal subspace of such a matrix provides a useful, low-dimensional representation of individual data. Here, we are interested in determining the $d$-dimensional principal subspace of a given matrix from sample entries, i.e. from small random submatrices. Although a number of sample-based methods exist for this problem (e.g. Oja's rule \citep{oja1982simplified}), these assume access to full columns of the matrix or particular matrix structure such as symmetry and cannot be combined as-is with neural networks \citep{baldi1989neural}. In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace is represented by a neural network, and hence can be scaled to datasets with an effectively infinite number of rows and columns. Our method consists in defining a loss function whose minimizer is the desired principal subspace, and constructing a gradient estimate of this loss whose bias can be controlled. We complement our theoretical analysis with a series of experiments on synthetic matrices, the MNIST dataset \citep{lecun2010mnist} and the reinforcement learning domain PuddleWorld \citep{sutton1995generalization} demonstrating the usefulness of our approach.
translated by 谷歌翻译
学习在无人驾驶汽车(UAV)捕获的图像中检测物体(例如人类)通常会遭受无人机对物体的位置造成的巨大变化。此外,现有的基于无人机的基准数据集不提供足够的数据集元数据,这对于精确的模型诊断至关重要,并且学习功能不变。在本文中,我们介绍了大天使,这是第一个基于无人机的对象检测数据集,该数据集由具有相似想象条件以及无人机位置以及对象姿势元数据捕获的真实和合成子集组成。一系列实验经过精心设计,使用最先进的对象检测器设计,以证明在模型评估过程中利用元数据的好处。此外,还提供了几种涉及模型微调过程中涉及真实和合成数据的关键见解。最后,我们讨论了有关大天使的优势,局限性和未来方向,以突出其对更广泛的机器学习社区的独特价值。
translated by 谷歌翻译
当前的量子点(QD)设备的自动传动方法在显示出一些成功的同时,缺乏对数据可靠性的评估。当自主系统处理嘈杂或低质量数据时,这会导致意外的失败。在这项工作中,我们为QD设备的强大自动调整提供了一个框架,该QD设备将机器学习(ML)状态分类器与数据质量控制模块结合在一起。数据质量控制模块充当“守门人”系统,确保只有国家分类器处理可靠的数据。较低的数据质量会导致设备重新校准或终止。为了训练两个ML系统,我们通过结合QD实验的典型合成噪声来增强QD仿真。我们确认,在状态分类器的训练中包含合成噪声可以显着提高性能,在测试实验数据时,准确性为95.0(9)%。然后,我们通过表明状态分类器的性能随着预期的数据质量而恶化,从而验证数据质量控制模块的功能。我们的结果为嘈杂的QD设备的自动调整建立了强大而灵活的ML框架。
translated by 谷歌翻译
许多生物,包括各种种类的蜘蛛和毛毛虫,都会改变其形状以切换步态并适应不同的环境。从可拉伸电路到高度变形的软机器人,最近的技术进步已经开始使变化的机器人成为可能。但是,目前尚不清楚应如何以及何时发生变化以及可以获得哪些功能,从而导致各种未解决的设计和控制问题。为了开始解决这些问题,我们在这里模拟,设计和构建一个软机器人,该机器人利用形状变化来在平坦和倾斜的表面上实现运动。在模拟中对该机器人进行建模,我们在两个环境中探索了它的功能,并证明了特定于环境特定形状和步态的存在,这些形状和步态成功地转移到了物理硬件中。我们发现,改变形状的机器人在模拟和现实中比等效但不正确的机器人更好地遍历这些环境。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce a class of persistence-based neural network layers. Persistence-based layers allow the users to easily inject knowledge about symmetries (equivariance) respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译